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Abstract Extended logistic regression is used to predict March–May severe convective storm (SCS)
activity based on the preceding December–February (DJF) El Niño–Southern Oscillation (ENSO) state.
The spatially resolved probabilistic forecasts are verified against U.S. tornado counts, hail events, and two
environmental indices for severe convection. The cross-validated skill is positive for roughly a quarter of
the U.S. Overall, indices are predicted with more skill than are storm reports, and hail events are predicted
with more skill than tornado counts. Skill is higher in the cool phase of ENSO (La Niña like) when overall
SCS activity is higher. SCS forecasts based on the predicted DJF ENSO state from coupled dynamical models
initialized in October of the previous year extend the lead time with only a modest reduction in skill
compared to forecasts based on the observed DJF ENSO state.

1. Introduction

Severe convective storms (SCSs; thunderstorms with tornadoes, large hail, or damaging straight-line winds)
occur around the world but are especially frequent in the U.S. Annual average insured losses from thunder-
storms in the U.S. during the period 2003–2015 were $11.23 billion (in 2016 USD), comparable to the losses
from hurricanes during the same period [Gunturi and Tippett, 2017].

In the U.S., official forecasts and outlooks provide information about expected SCS activity up to a week in
advance. However, prospects for extended-range prediction are supported by evidence that U.S. SCS activity
is related to predictable climate signals such as the Madden-Julian Oscillation (MJO) [Barrett and Gensini, 2013;
Thompson and Roundy, 2013], the El Niño–Southern Oscillation (ENSO) [Cook and Schaefer, 2008; Lee et al.,
2013; Allen et al., 2015a; Lee et al., 2016; Cook et al., 2017], and Gulf of Mexico sea surface temperature (SST)
[Jung and Kirtman, 2016; Molina et al., 2016]. Similar relations of U.S. precipitation and near-surface temper-
ature with ENSO, combined with the ability to predict ENSO, were the basis of the first seasonal climate
forecasts for the U.S. [Barnston et al., 1994]. More recently, improved model representation and prediction of
the MJO and its teleconnections have been the basis for skillful subseasonal prediction of U.S. precipitation
and near-surface temperature [Vitart, 2014; DelSole et al., 2017].

A particular challenge of extended-range prediction of SCS activity compared to the prediction of temper-
ature or precipitation (or even hurricanes) is that physics-based dynamical models do not directly resolve
thunderstorms at that lead time [Tippett et al., 2015]. This limitation means that a completely physics-based
extended-range SCS forecast is not presently practical, and statistical methods are needed to bridge this gap.
One approach is to use numerical weather prediction (NWP) models to predict environmental factors (indices)
that measure the favorability of conditions for tornado and hail [Tippett et al., 2012; Carbin et al., 2016]. An alter-
native forecast method is to construct a statistical model that relates antecedent conditions with subsequent
SCS activity, much in the way that early seasonal climate forecasts were constructed [Barnett and Preisendorfer,
1987]. Elsner and Widen [2013], for example, developed a statistical model based on trends, year-to-year auto-
correlation, and February SST in the western Caribbean and Gulf of Alaska to predict April–June tornado
counts for a region in the central Great Plains. Allen et al. [2015a], instead, used an ENSO-based regression to
form categorical probabilities for the level of March–April tornado and hail environmental indices in a region
including northern Texas and Oklahoma.
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Here we construct and assess spatially resolved March–May (MAM) probabilistic forecasts for SCS activity over
the contiguous U.S. (CONUS). The December–February (DJF) ENSO state is the predictor for the probability
of below-normal, normal, and above-normal SCS activity. SCS activity is defined by pooling tornado reports,
hail events, and environmental indices. By pooling the SCS data, we take the view that observed variations in
the ENSO response across the report and index data reflect unpredictable weather noise rather than robust
signal differences. The practical consequence of pooling the SCS activity data is that the resulting SCS forecasts
provide no differentiation between the expected levels of tornado, hail, or index activity. The SCS activity
forecasts are verified against tornado reports, hail events, and environmental indices separately. Observed
values of the DJF ENSO state are available early in March. However, the DJF ENSO state can be predicted several
months in advance with high skill, and we demonstrate that forecasts of MAM SCS activity based on predicted
ENSO state available in early October of the previous year have skill that is comparable to those based on the
observed DJF ENSO state.

The paper is organized as follows. Data and methods are described in section 2. Results are presented in
section 3, and a summary and conclusions in section 4.

2. Data and Methods

In this section we describe the data (storm reports, severe weather indices, and observed and forecast
DJF ENSO state) and methods used to construct (extended logistic regression) and verify (Brier skill score)
cross-validated probabilistic forecasts of MAM SCS activity.

2.1. Data
Tornado and hail reports are taken from the NOAA Storm Prediction Center (SPC) Severe Weather Database
and aggregated on a seasonal basis (MAM) to a 1∘ × 1∘ grid for the 37 years 1979–2015. The gridded tornado
data correspond to the number of MAM tornado reports within each grid box. The gridded hail data are the
number of MAM hail events, which are defined as 3-hourly periods with one or more reports of hail greater
than 25.4 mm in diameter [Allen et al., 2015b]. Tornado and hail reports correspond to observed events but
have limitations related to the reporting process [Verbout et al., 2006; Allen and Tippett, 2015].

To offset report limitations, we use two SCS activity indices: the Tornado Environment Index (TEI) Tippett et al.
[2012, 2014] and the Hail Environment Index (HEI) [Allen et al., 2015b], which show good associations with
corresponding storm reports but are spatially complete, unrelated to the storm reporting process, and less
noisy. TEI and HEI provide spatially complete descriptions from the environmental viewpoint and reflect
storm potential rather than occurrence. TEI and HEI are functions of the monthly averages of convective
precipitation, 0–3 km storm relative helicity, and in the case of HEI, the 180 hPa mixed-layer convective avail-
able potential energy. Low-level moisture is not included in the HEI used here. Both indices are here calculated
using data from the North American Regional Reanalysis (NARR) [Mesinger et al., 2006] for the same time period
as the storm reports and averaged on the same 1∘ × 1∘ grid.

The 37 antecedent DJF values of the seasonal Oceanic Nino Index (ONI; the NINO 3.4 index computed using
the ERSST version 4 data set) are obtained from the NOAA Climate Prediction Center. Forecast DJF averages
of the NINO 3.4 index initialized in 1982–2014 (33 forecasts) come from the North American Multimodel
Ensemble (NMME) project [Kirtman et al., 2014]. The details of the models used to form multimodel ensem-
ble mean and its deterministic and probabilistic skill for monthly averages are found in Barnston et al. [2017]
and Tippett et al. [2017]. We consider NMME forecasts of DJF NINO 3.4 with lead times ranging from 5 months
(starts in July) to 0 months (starts in December); real-time NMME forecast data are available by the eighth of
the start month.

2.2. Extended Logistic Regression
The forecast format here consists of probabilities for the occurrence of below-normal, normal, and above-
normal SCS activity. These three categories are defined to be equally likely and have climatological frequen-
cies of 33%. The likelihood of the categories conditional on the DJF ONI value is estimated using extended
logistic regression (ELR), which has been previously applied to model output in medium-range, subseasonal
and seasonal prediction [Wilks and Hamill, 2007; Wilks, 2009; Allen et al., 2015a; Vigaud et al., 2017]. In ELR,
the probability p of not exceeding a threshold q conditional on a single predictor variable (here the DJF ONI
value) is

log
(

p
1 − p

)
= b0 + b1ONI + g(q) , (1)
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where b0 and b1 are the intercept and regression coefficient, respectively, and we take g(q) = b2q. Here q is
the climatological percentile of SCS activity, which we convert to ranks. The terciles of the standard logistic
distribution are− log 2 and log 2, and the probabilities of the occurrence of below-normal, above-normal, and
normal activity are computed from, respectively,

PB =
exp

(
b0 + b1ONI − b2 log 2

)
1 + exp

(
b0 + b1ONI − b2 log 2

) ,

PA = 1 −
exp

(
b0 + b1ONI + b2 log 2

)
1 + exp

(
b0 + b1ONI + b2 log 2

) ,

PN = 1 −
(

PA + PB

)
.

(2)

The left-hand side of (1) is the log-odds ratio, which is an increasing function of the probability p. Conse-
quently, a positive value of b1 indicates that the probability of the below normal category is increased (reduced
SCS activity) for positive ONI (El Niño-like) values and decreased (increased SCS activity) for negative ONI
(La Niña-like) values.

2.3. Estimation Procedure
Values for the ELR parameters b0, b1, and b2 are estimated at each grid point using historical values of the DJF
ONI and SCS activity as measured by the pooled tornado, hail, TEI, and HEI data. By pooling the SCS data, we
do not estimate separate regression parameters (or produce separate forecasts) for tornado, hail, and index
data but instead estimate parameters for forecasts of “generic” SCS activity. Since each data set has different
units and ranges, each is converted to percentile ranks before pooling. For forecasts of tercile probabilities, the
ELR fitting procedure requires classifying the predictand data as falling into one of the three equally likely cat-
egories of below-normal, above-normal, and normal activity. This classification fails when more than 13 years
of the predictand data are zero, since in this case the division between the below-normal and normal cate-
gories (the 33rd percentile) is ambiguous. This problem of locations with fewer than 24 nonzero values is an
issue only for the report data, since the indices are always nonzero. This filtering of the data means that at a
few grid points west of the Rockies (see Figure S1 in the supporting information), 1 or 2 of the report data sets
are not used in the fitting. TEI and HEI values are nonzero and used in the fitting at all grid points. Statistical
significance of the estimated parameters at the 5% level is determined by likelihood ratio test.

Varying levels of smoothing are applied to the four SCS activity data sets, and the performance of resulting
forecasts is used to choose the appropriate level of smoothing. Spatial smoothing is applied prior to conver-
sion to percentile ranks and reduces the frequency of grids and years with no reports. In particular, the training
data are spatially smoothed using 3 × 3, 7 × 7, and 9 × 9 kernel smoothers with weights that follow a bivariate
Gaussian function with standard deviation = 1∘ and are normalized to sum to 1. Coastal area weights are nor-
malized accordingly to the number of land grid points included in the smoothing. The terciles levels for the
four data sets with 7 × 7 smoothing are shown in supporting information Figure S1.

In the skill assessment, verification data are also spatially smoothed with the same kernel smoothers, and fore-
casts are made using leave-one-out cross validation in which regression parameters are estimated withholding
all data from the year being forecast. Tercile definitions and percentile rankings are also cross validated.

The observed DJF ONI values in the ELR are replaced by the forecast values of NINO 3.4 for the SCS activity
forecasts based on predicted values of the NINO 3.4 index, and the SCS activity forecasts are verified for the
33 years 1983–2015.

2.4. Validation
Forecasts are validated at each grid point using the Brier skill score (BSS) [Brier, 1950], which for a particular
category is

BSS = 1 −
∑N

i=1

(
Pi − Oi

)2

∑N
i=1

(
Ri − Oi

)2
(3)

where Pi is the forecast probability in year i; Oi is 1 if the category occurs and 0 otherwise; Ri is a reference
forecast, here the climatological frequency; and N is the number of forecasts. Here we show the BSS for fore-
casts of the occurrence of the below and above categories separately and note that their average corresponds
to the ranked probability skill score [Bradley and Schwartz, 2011]. Forecasts with BSS> 0 are more accurate
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Figure 1. Number of grid points whose BSS is greater than 0.0, (left) for different fitting-validation kernel size
combinations and (right) for different NMME lead times. Solid lines are for below category (PB) forecast; dashed
lines for above category (PA) forecast. X axis labels in Figure 1 (right) indicates correlation of the forecast with ONI.
The total number of grid points of the domain is 867.

than the climatological reference forecast, and we denote them here as skillful. The numerical values of the
BSS tend to be small compared to more familiar measures like correlation. For instance, probability forecasts
for joint Gaussian variables with correlation r have BSS≈1−

√
1 − r2, so that BSS=0.1 (a typical value for sea-

sonal predictions of precipitation outside of the tropics) corresponds to a correlation of approximately 0.44
[Tippett et al., 2010, 2017].

3. Results

Our physical understanding of the mechanisms (shifts of the jet stream, changes in moisture availability, etc.)
by which ENSO modulates SCS activity means that a ENSO-based SCS seasonal activity forecast should be
relatively large scale and locally homogeneous. On the other hand, estimates of the ENSO signal from the
report data include considerable small-scale variability due to the small spatial scale and relative rarity of
severe thunderstorms. Moreover, there is considerable SCS variability that is not explained by ENSO, especially
at the local level. Therefore, we smooth the training data so that the resulting forecast is relatively large scale
and locally smooth. Likewise, we smooth the verification data and acknowledge that the ENSO signal only
provides information about SCS activity on fairly large spatial scales [Gong et al., 2003; Allen et al., 2015a].
To select reasonable levels of smoothing, we use the number of grid points with positive BSS as a summary
measure of overall skill. Figure 1 (left) shows the number of grid points with positive BSS for the below-normal
and above-normal categories, different combinations of smoothing of the training and verification data, and
verification against different measures of SCS activity (reports and indices). When the 3×3 smoother is applied
to the verification data, the choice of smoothing for the training data has little impact, with some indication
that more smoothing of the training data reduces skill (Figure 1, left). There is little difference in the number
of grid points with positive BSS for the 7 × 7 and 9 × 9 smoothing of the validation data, and thus, to avoid
excessive smoothing, we choose the 7× 7 smoother for the validation data. For the 7× 7 smoothed validation
data, the number of grid points with positive BSS is roughly optimal with 7× 7 smoothing of the training data.
We use this smoothing combination (7 × 7 smoothing of the training and validation data, referred to as 7-7)
in the results that follow.

We also explore how the number of grid points with positive BSS varies as the SCS forecast is verified against
different data sets (Figure 1, left). Verification against indices produces substantially more grid points with
positive BSS than does verification against report data. This difference is partially a reflection of the greater
predictability of the indices but is also due in part to the fact that forecasts for the indices can be verified at
all grid points, while verification against report data is only possible at grid points with fewer than 13 zero
values. In particular, forecasts verified against indices count as skillful even in regions were few if any severe
thunderstorms occur (as indicated by both low values of the indices and lack of reports; see Figure S1) as
long as there is an ENSO signal in the environmental factors. Zero values in the report data may reflect actual
nonoccurence or simply a lack of reports. Verification against hail events gives more points with positive BSS
than does verification against tornado reports, likely due to the greater variability and smaller spatial footprint
of tornadoes. In this case, the tornado reports and hail events have sufficient nonzero values at roughly the
same number of grid points, and, in fact, the tornado grid tends to have more points.
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Figure 2. (a) Regression coefficient for ONI (b1) and (b) its coefficient of variation in the leave-one-out cross validation;
hatched areas in Figure 2a are for grid points where b1 is significant (p value < 0.05). Model forecast for (c) weak (0.5)
and (d) moderate (1.0) El Niño, and for (e) weak (−0.5) and (f ) moderate (−1.0) La Niña. Only the dominant (≥ 35%)
probability is shown, and white indicates areas where no category has 35% or more probability.

To assess the potential for increasing the lead of spring SCS activity forecasts, Figure 1 (right) compares the
number of grid points with positive BSS for forecasts using observed DJF ONI with those in which NMME
forecast values of the NINO 3.4 index are used. The NMME forecast initializations range from July (longest lead)
to December (shortest lead) of the proceeding year, and the correlations with the observed ONI values range
from 0.97 to 0.88 (Figure 1, right). The number of grid points with positive BSS drops when forecast NINO
3.4 values are used, but the drop does not increase substantially as lead time increases until September starts,
suggesting that SCS forecasts based on NINO 3.4 predicted initialized in October are still skillful.

The regression coefficient (b1) that multiplies ONI (Figure 2a; computed using all years of data) determines,
for the most part, the spatial structure of the probability forecasts shown for four ENSO states (Figures 2c–2f ).
The other two regression coefficients (not shown) are relatively uniform spatially. Positive values of the regres-
sion coefficient indicate enhanced SCS activity during La Niña conditions and are found for most of the U.S.,
including the south and central regions where severe thunderstorm activity is most frequent during this
season. Areas where the values of b1 are statistically significantly different from zero at the 5% level are
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Figure 3. Brier skill score (BSS) maps for the SCS activity forecasts verified against hail events, tornado counts, HEI,
and TEI. Areas with insufficient (see text) nonzero data values are indicated in white.

indicated with hatching and match well the areas where the coefficient of variation (CoV; mean/standard
deviation) of b1 obtained from the leave-one-out cross validation are small. Contrastingly, Florida and the
western U.S. including the southwest, California, and parts of Oregon show the opposite relation between
SCS activity and ENSO. West of the Rockies, the indices are the primary source of information in the fitting of
the regression parameters, SCS activity is low, and shifts of the indices to the above category still mean that
the expected SCS activity in absolute terms is low (see definition of above normal in Figure S1).

Figures 2c–2f show the probabilistic forecasts of MAM tornado and hail activity with only the dominant cat-
egory probability indicated, for representative ONI values: weak (0.5) and moderate (1.0) El Niño (EN), and
weak (−0.5) and moderate (−1.0) La Niña (LN). As mentioned before, the spatial structure of the probability
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Figure 4. As in Figure 3 except using NINO 3.4 values from NMME forecasts initialized in early October 1982–2014.

forecast maps matches that of the regression coefficient b1. Weak EN gives a shift of a few percent away
from climatological values for the below category throughout the Great Plains and Midwest and somewhat
stronger shifts in the above category probabilities over Florida and the southwest of the continent. The prob-
ability shifts are amplified for moderate EN and exceed 10% in some regions, most notably over the southern
to central Great Plains for the below-normal category, while Florida and the desert Southwest exhibit particu-
larly strong responses in above-normal category. In contrast, for moderate LN, the probability shifts are in the
opposite direction and overall reflect somewhat stronger probabilistic likelihoods. The probability shifts are
not symmetric with respect to ONI because of the intercept term (b0) which is negative. This asymmetry may
be a reason for the larger number of grid points with positive BSS for the below category seen in the report
verifications and to a lesser degree in the index verifications (Figure 1, left).
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Maps of BSS values in Figure 3 show the skill of the SCS activity forecasts verified against the four data sets.
Grid points with more than 13 zero values are not included in the verification; these are limited to areas west
of the Rockies for hail events, and to AZ, MT, and part of NV and ID for the tornado counts. The area with the
strongest dependence on ENSO (TX, OK, LA, and AR) has the highest overall skill for both the below and above
categories. The skill for hail over this region is westwardly displaced relative to that for tornadoes, reflecting
the difference in spatial climatology between the phenomena. Florida, which has an opposite dependence
on ENSO, as the rest of the eastern U.S. is skillfully predicted only for the indices, reflecting large variability
in the tornado frequency. The skill for TEI is also higher over a wider area relative to HEI, reflecting the lower
instability available over Florida. CA, OR, and the southwest have positive BSS values for the above category
only, in line with the results shown in Figure 2. This signal is consistent with the substantial reductions in avail-
able moisture that occur in this region during LN years, and contrasting higher values during EN. This change
in available moisture has a consequent influence in available instability, thus leading to substantial skill
in both patterns, though the relatively sparse population precludes sufficient report data to validate the
environments of the indices. Another region with appreciable skill is the Midwest, in particular over Michigan.

Both categories have greater skill for ONI <−0.1 than for ONI > 0.1 (Figure S2). This behavior is consistent
with the fact that SCS activity shows a reduced shift from normal level during warm (El Niño-like) ENSO con-
ditions than during cool (La Niña-like) ENSO conditions [Allen et al., 2015a]. This differing level of skill is also
consistent with the asymmetry of the probability forecasts with respect to the ONI. The BSS measures skill rel-
ative to a climatological forecast and rewards more forecasts with larger excursions from the climatological
probabilities.

The spatial structure of the skill shows little change when forecast values of the DJF NINO 3.4 index are used
in place of observed DJF ONI. Figure 4 shows the skill for the four data sets when using NINO 3.4 values from
NMME forecasts initialized in early October. The high skill areas seen in Figure 2 maintain similar values of BSS
when predicted values of NINO 3.4 are used but are somewhat more limited in extent. These results shows
that MAM SCS activity can be predicted with some skill 5–6 months ahead.

4. Summary and Conclusions

The modulation of U.S. climate by the El Niño–Southern Oscillation (ENSO) provides a basis for seasonal pre-
diction of precipitation and near-surface temperature anomalies. Recently, the evidence that ENSO also has
an impact on U.S. severe convective storm (SCS; tornadoes and hail) activity has become clearer [Cook and
Schaefer, 2008; Allen et al., 2015a]. The ENSO signal in SCS activity is difficult to detect due to the large
variability (noise) in storm occurrence. Environmental indices that measure how conducive conditions are for
storm occurrence are less susceptible to the variability posed by incomplete storm observations and pro-
vide a more coherent picture of the ENSO signal in SCS activity. Since ENSO is fairly persistent from winter to
spring, the winter ENSO state, here the December–February (DJF) NINO 3.4 value, is a plausible predictor of
springtime, March–May (MAM) SCS activity. Utilizing this predictability, we have constructed cross-validated
and spatially resolved probability forecasts of SCS activity based on the DJF ONI value and verified them
against MAM tornado reports, hail events, a Hail Environment Index, and a Tornado Environment Index.

Overall, the forecast skill is most robust in the southern U.S. including parts of Texas, Oklahoma, Kansas,
Louisiana, and Arkansas. The environmental indices can be predicted more skillfully and in more regions than
the storm report data. The indices show ENSO signals west of the Rockies where their climatological values
are sufficiently low (see Figure S1) that above-normal values still indicate little favorability of the environment
for SCS activity. Hail events are forecast skillfully in more locations than are tornado counts, likely as a result
of their higher frequency and larger spatial footprint. The forecasts show more skill on average for cool ENSO
conditions (La Niña like) when SCS activity is enhanced overall than for warm ENSO (El Niño like). The forecast
probability shifts away from normal activity are smaller during warm conditions than during cool conditions,
consistent with Allen et al. [2015a].

From the perspective of an application to seasonal forecasting of spring SCS activity, the DJF ONI value is
predictable several months in advance. In light of this, we have explored longer-lead SCS forecasts of MAM
based on NMME predictions of the NINO 3.4 index. SCS predictions based on NMME forecasts initialized in
October show only modest decreases in skill compared to those based on observed DJF values. These findings
suggest that probabilistic guidance for hail and tornado occurrence based on ENSO state is feasible at leads
up to 5 months. However, as is the case with other seasonal climate forecasts, there is substantial variability in
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SCS activity that is unexplained by ENSO and may or may not be predictable. In any case, a seasonal forecast
of SCS activity is of limited value to the general public, though it provides a good opportunity to encourage
preparedness. On the other hand, organizations with broad exposure to SCS risk and the ability to incorporate
uncertain information into their decision making might be able to profit from a seasonal SCS forecast.
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